Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Fish Biol ; 103(5): 864-883, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37395550

RESUMEN

The shortfin mako shark is a large-bodied pursuit predator thought to be capable of the highest swimming speeds of any elasmobranch and potentially one of the highest energetic demands of any marine fish. Nonetheless, few direct speed measurements have been reported for this species. Here, animal-borne bio-loggers attached to two mako sharks were used to provide direct measurements of swimming speeds, kinematics and thermal physiology. Mean sustained (cruising) speed was 0.90 m s-1 (±0.07 s.d.) with a mean tail-beat frequency (TBF) of 0.51 Hz (±0.16 s.d.). The maximum burst speed recorded was 5.02 m s-1 (TBFmax = 3.65 Hz) from a 2 m long female. Burst swimming was sustained for 14 s (mean speed = 2.38 m s-1 ), leading to a 0.24°C increase in white muscle temperature in the 12.5 min after the burst. Routine field metabolic rate was estimated at 185.2 mg O2 kg-1 h-1 (at 18°C ambient temperature). Gliding behaviour (zero TBF) was more frequently observed after periods of high activity, especially after capture when internal (white muscle) temperature approached 21°C (ambient temperature: 18.3°C), indicating gliding probably functions as an energy recovery mechanism and limits further metabolic heat production. The results show shortfin mako sharks generally cruise at speeds similar to other endothermic fish - but faster than ectothermic sharks - with the maximum recorded burst speed being among the highest so far directly measured among sharks, tunas and billfishes. This newly recorded high-oxygen-demand performance of mako sharks suggests it may be particularly vulnerable to habitat loss due to climate-driven ocean deoxygenation.


Asunto(s)
Tiburones , Femenino , Animales , Tiburones/fisiología , Natación/fisiología , Músculos , Temperatura , Atún
3.
Int J Health Geogr ; 20(1): 46, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863206

RESUMEN

BACKGROUND: Since early March 2020, the COVID-19 epidemic across the United Kingdom has led to a range of social distancing policies, which resulted in changes to mobility across different regions. An understanding of how these policies impacted travel patterns over time and at different spatial scales is important for designing effective strategies, future pandemic planning and in providing broader insights on the population geography of the country. Crowd level data on mobile phone usage can be used as a proxy for population mobility patterns and provide a way of quantifying in near-real time the impact of social distancing measures on changes in mobility. METHODS: Here we explore patterns of change in densities, domestic and international flows and co-location of Facebook users in the UK from March 2020 to March 2021. RESULTS: We find substantial heterogeneities across time and region, with large changes observed compared to pre-pademic patterns. The impacts of periods of lockdown on distances travelled and flow volumes are evident, with each showing variations, but some significant reductions in co-location rates. Clear differences in multiple metrics of mobility are seen in central London compared to the rest of the UK, with each of Scotland, Wales and Northern Ireland showing significant deviations from England at times. Moreover, the impacts of rapid changes in rules on international travel to and from the UK are seen in substantial fluctuations in traveller volumes by destination. CONCLUSIONS: While questions remain about the representativeness of the Facebook data, previous studies have shown strong correspondence with census-based data and alternative mobility measures, suggesting that findings here are valuable for guiding strategies.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Control de Enfermedades Transmisibles , Humanos , Pandemias , SARS-CoV-2 , Reino Unido/epidemiología
4.
Mar Environ Res ; 168: 105306, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33839400

RESUMEN

Modifications to estuaries through the construction of barrages alter the natural dynamics of inhabitant species by controlling freshwater inputs into those systems. To understand the effects of modified freshwater flows on a native scyphozoan jellyfish, Catostylus mosaicus, and to identify the environmental drivers of medusa occurrence, we analysed a 20-year observational dataset composed of 11 environmental variables and medusa presence/absence from 15 sampling stations located below the Fitzroy Barrage, in the Fitzroy River, Queensland. Major decreases in salinity (minimum salinity 0) occurred approximately 16 times during the 20-year period and medusae disappeared from the estuary following every major freshwater flow event. Salinity was identified as the most influential variable contributing to variation in the number of upper estuary sites reporting jellyfish. We then ran two laboratory experiments to test the following hypotheses: (i) prolonged decreases in salinity impair survival, pulsation, and respiration rates of C. mosaicus medusae; and (ii) transient decreases temporarily impair pulsation and respiration but medusae recover when salinity returns to normal levels. Medusae were unable to survive extended periods at extreme low salinities, such that they would experience when a barrage opens fully, but had significantly higher survival and recovery rates following smaller, transient changes to salinity that might occur following a moderate rainfall event. This demonstrates for the first time that modification of freshwater flow by a barrage regulates the population dynamics of an estuarine jellyfish, and highlights the need for robust, long term datasets, and to firmly embed experimental approaches in realistic ecological contexts.


Asunto(s)
Estuarios , Salinidad , Animales , Agua Dulce , Dinámica Poblacional , Queensland
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...